Oxford A Level Sciences

AQA Chemistry

20 Electrode potentials and electrochemical cells Practice questions

Question number	Answer	Marks	Guidance
1 (a)	By definition	1	allow 'set to this value'
1 (b)	1.23 V	1	Allow + or -
1 (c)	$Pt H_2(g) OH^-(aq),H_2O(I) O_2(g) H_2O(I),OH^-(aq) Pt$		H ₂ O not essential, allow reverse order
	Correct but with Pt missing	1	
	Includes Pt with correct representation	1	
1 (d)	Uses $O_2 + 2H_2O + 4e^- \rightarrow 4OH$ And (2x) $2OH^- + H_2 \rightarrow 2H_2O + 2e^-$	1	
	$2H_2 + O_2 \rightarrow 2H_2O$	1	
1 (e)	Increases the surface area (so reaction faster)	1	
1 (f)	Overall reaction is the same $(2H_2 + O_2 \rightarrow 2H_2O)$	1	Or shows e.m.f. is the same
1 (g)	Hydrogen and oxygen supplied continuously OR	1	Or can be refuelled quickly Allow any one mark
	Can be operated without stopping to recharge		
1 (h)	Hydrogen may need to be made using an energy source that is not 'carbon neutral'	1	
2 (a)	Zn	1	This is always the species with the most negative E value (it is oxidised itself).
2 (b) (i)	Fe ²⁺	1	
2 (b) (ii)	Cl ₂	1	
2 (c) (i)	The standard electrode potential: 1.25 V	1	Remember that: $E_{cell} = E_{right} - E_{left}$
2 (c) (ii)	$TI^{3+} + 2Fe^{2+} \to 2Fe^{3+} + TI^{+}$	2	One mark for a balanced equation and one for the correct direction.
3 (a)	Pt H ₂ H ⁺ Fe ²⁺ Fe	2	Allow 1 for correct order of symbols but lose second
	Note, allow one mark only for correct symbol in reverse:		mark for a wrong phase boundary(s) / Pt missing / extra
	Fe Fe ²⁺ H ⁺ H ₂ Pt		Pt on RHS, additional phase boundary
			Allow dashed lines for salt bridge
			Ignore state symbols Ignore 2 if used before H ⁺

Oxford A Level Sciences

AQA Chemistry

20 Electrode potentials and electrochemical cells Practice questions

3 (b)	Electron donor	1	Allow (species that) loses electrons Do not allow reference to electron pairs
3 (c)	Cl ₂ / chlorine	1	If M1 blank or incorrect cannot score M2
	(Species on RHS / electron donor) has most positive / largest E_o / has highest potential	1	Do not allow reference to e.m.f. or <i>E</i> (cell)
3 (d) (i)	Cl / chlorine	1	
3 (d) (ii)	Chlorine +1 to chlorine 0	1	CE if chlorine not identified in 5(d)(i)
			Allow chlorine +1 to chlorine -1 (in Cl ⁻)
			Allow oxidation state decreases by one OR two
			Allow oxidation state changes by -1 OR -2
3 (e)	$\begin{array}{l} 4\text{HOCI} + 4\text{H}^+ + 4\text{OH}^- \rightarrow 2\text{Cl}_2 + \text{O}_2 + 6\text{H}_2\text{O}\\\\ \text{OR}\\\\ 4\text{HOCI} \rightarrow 2\text{Cl}_2 + \text{O}_2 + 2\text{H}_2\text{O} \end{array}$	2	Allow one mark for any incorrect equation that shows $HOCI \rightarrow Cl_2 + O_2$ Allow multiples Ignore state symbols Penalise one mark for uncancelled or uncombined species (e.g., $H_2O + H_2O$ instead of $2H_2O$)
3 (f)	e.m.f. = 0.40 - (-1.25) = 1.65 V / +1.65 V	1	Allow –1.65 V